Graphical Presentation of a Nonparametric Regression with Bootstrapped Confidence Intervals

نویسندگان

  • Mark Nicolich
  • Gail Jorgensen
چکیده

Parametric regression (least-squares) techniques are used to estimate a statistical model that attempts to predict a variable based on one, or more, other variables. The model is required to have a specified algebraic form such as a straight line, a parabola, or an exponential curve. An example would be predicting a persons annual income based on their age, years of schooling and gender using a linear model of the form:

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Confidence Intervals for Lower Quantiles Based on Two-Sample Scheme

In this paper, a new two-sampling scheme is proposed to construct appropriate confidence intervals for the lower population quantiles. The confidence intervals are determined in the parametric and nonparametric set up and the optimality problem is discussed in each case. Finally, the proposed procedure is illustrated via a real data set. 

متن کامل

Statistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm

This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...

متن کامل

Empirical Likelihood for Nonparametric Additive Models

Nonparametric additive modeling is a fundamental tool for statistical data analysis which allows flexible functional forms for conditional mean or quantile functions but avoids the curse of dimensionality for fully nonparametric methods induced by high-dimensional covariates. This paper proposes empirical likelihood-based inference methods for unknown functions in three types of nonparametric a...

متن کامل

Using Bootstrapped Confidence Intervals for Improved Inferences with Seemingly Unrelated Regression Equations

The usual standard errors for the regression coe cients in a Seemingly Unrelated Regression model have a substantial downward bias. Bootstrapping the standard errors does not seem to improve inferences. In this paper Monte Carlo evidence is reported which indicates that bootstrapping can result in substantially better inferences when applied to t-ratios rather than to standard errors. 3

متن کامل

rdrobust: An R Package for Robust Nonparametric Inference in Regression-Discontinuity Designs

This article describes the R package rdrobust, which provides data-driven graphical and inference procedures for RD designs. The package includes three main functions: rdrobust, rdbwselect and rdplot. The first function (rdrobust) implements conventional local-polynomial RD treatment effect point estimators and confidence intervals, as well as robust bias-corrected confidence intervals, for ave...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998